Abstract
ABSTRACTThe results of a numerical analysis of the conditions and characteristics of the dispersion of the water–coal particles during ignition under the conditions of an intense radiation-convective heating have been presented in the article. A comparative analysis of the theoretical and experimental values of ignition delay times of the fuel particles has showed their good correlation. Also, a comparative analysis of the characteristic dispersion times, obtained theoretically and established in the experiments, has showed a good correlation between them. According to the results of the numerical simulation, it has been established that dispersion of the water–coal particles during their heating before their ignition can occur as a result of the occurrence of the filtration stresses in the porous structure of the fuel. It has been found that the dispersion of the particles occurs before a complete evaporation within the pore moisture.The theoretical analysis has shown that the permeability of a dry coal structure has a significant effect on the characteristics and dispersion conditions. The influence of the values of the dimensionless Darcy criterion (Da) on the dispersion conditions has also been analyzed. It has been established that as the value of Da increases, the dispersion time decreases substantially. This is due to a decrease in the permeability of the porous structure of the fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.