Abstract

Pinnipeds (true seals, sea lions and walruses) inhabit two thermally different environments, air and water, so need to make continuous adjustments to maintain a balanced body temperature. The thermal isolation properties of thick blubber keep warmth within the body's core, ideal for mammals while in the water; however, when on land, this thick blubber makes it difficult to lose heat. Some pinnipeds use thermal windows, discrete patches where temperature changes on their body surface, as a mechanism to dissipate excessive heat. We identify the factors that correlate with the appearance of thermal windows and changes in body surface temperature on southern elephant seals, Mirounga leonina, while they are hauled out ashore. Infrared thermography was used to measure surface temperature of the seals. Temperature was lower on the torso than the flippers and head, suggesting that not all body sites have the same role in thermal balance. Air temperature was the main driver of variation in the surface temperature of the seals' flippers and head; seals cool their superficial tissues when the air temperature is below ~ 2°C. This minimizes heat loss by reducing the thermal gradient between their skin and the ambient air. Wind speed was the main predictor of whether thermal windows appear on a seals' body surface. When wind speed was minimal, thermal windows occurred more often, which may be associated with either hair and skin drying, or producing thermal conditions for hair and skin regrowth. The type of aggregation (huddled or alone) influenced the surface temperature of the fore flippers; however, we did not find statistical influence of the seal's sex, state of moult, or the substrate on which they were hauled out (kelp or sand). Understanding how animals maintain their thermal balance is important if we are to predict how they will respond to future climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.