Abstract
We study the generation of homochirality in a general chemical model (based on the homogeneous, fully connected Smoluchowski aggregation-fragmentation model) that obeys thermodynamics and can be easily mapped onto known origin of life models (e.g. autocatalytic sets, hypercycles, etc.), with essential aspects of origin of life modeling taken into consideration. Using a combination of theoretical modeling and numerical simulations, we look for minimal conditions for which our general chemical model exhibits spontaneous mirror symmetry breaking. We show that our model spontaneously breaks mirror symmetry in various catalytic configurations that only involve a small number of catalyzed reactions and nothing else. Of particular importance is that mirror symmetry breaking occurs in our model without the need for single-step autocatalytis or mutual inhibition, which may be of relevance for prebiotic chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.