Abstract
Hot flow anomalies (HFAs) result from the interaction of an interplanetary current sheet with Earth's bow shock and were discovered over a decade and a half ago. The deflected flow and hot interior of an HFA are consequences of ions reflected at the bow shock being channeled along the current sheet. Previous studies have shown that this requires a solar wind motional electric field pointing toward the current sheet on at least one side and that the current sheet must be a tangential discontinuity. Recent reports of a rapid displacement of the magnetopause by 5 Re as the result of an HFA have led us to explore the interplanetary conditions surrounding all reported HFAs. The kinetic aspects of HFA formation suggest that current sheets should pass relatively slowly along the bow shock; that is, their normals should have large cone angles. This hypothesis is confirmed. Individual multispacecraft case studies confirm that the underlying current sheets are tangential discontinuities, but most HFAs have relatively small jumps in field magnitude from before to after and thus would fail traditional identification tests as definite tangential discontinuities. The combination of our results suggests that HFAs should occur at a rate of several per day, and thus they may play a significant role in the solar‐terrestrial dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.