Abstract

Three types of genes have been proposed to promote sympatric speciation: habitat preference genes, assortative mating genes and habitat-based fitness genes. Previous computer models have analysed these genes separately or in pairs. In this paper we describe a multilocus model in which genes of all three types are considered simultaneously. Our computer simulations show that speciation occurs in complete sympatry under a broad range of conditions. The process includes an initial diversification phase during which a slight amount of divergence occurs, a quasi-equilibrium phase of stasis during which little or no detectable divergence occurs and a completion phase during which divergence is dramatic and gene flow between diverging habitat morphs is rapidly eliminated. Habitat preference genes and habitat-specific fitness genes become associated when assortative mating occurs due to habitat preference, but interbreeding between individuals adapted to different habitats occurs unless habitat preference is almost error free. However, ‘nonhabitat assortative mating’, when coupled with habitat preference can eliminate this interbreeding. Even when several loci contribute to the probability of expression of non-habitat assortative mating and the contributions of individual loci are small, gene flow between diverging portions of the population can terminate within less than 1000 generations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.