Abstract

Graphite is the most widely used anode material for Li‐ion batteries and is also considered a promising anode for K‐ion batteries. However, Na+, a similar alkali ion to Li+ or K+, is incapable of being intercalated into graphite and thus, graphite is not considered a potential electrode for Na‐ion batteries. This atypical behavior of Na has drawn considerable attention; however, a clear explanation of its origin has not yet been provided. Herein, through a systematic investigation of alkali metal graphite intercalation compounds (AM‐GICs, AM = Li, Na, K, Rb, Cs) in various solvent environments, it is demonstrated that the unfavorable local Na‐graphene interaction primarily leads to the instability of Na‐GIC formation but can be effectively modulated by screening Na ions with solvent molecules. Moreover, it is shown that the reversible Na intercalation into graphite is possible only for specific conditions of electrolytes with respect to the Na‐solvent solvation energy and the lowest unoccupied molecular orbital level of the complexes. It is believed that these conditions are applicable to other electrochemical systems involving guest ions and an intercalation host and hint at a general strategy to tailor the electrochemical intercalation between pure guest ion intercalation and cointercalation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.