Abstract
The first Bayesian results for the sparse normal means problem were proven for spike-and-slab priors. However, these priors are less convenient from a computational point of view. In the meanwhile, a large number of continuous shrinkage priors has been proposed. Many of these shrinkage priors can be written as a scale mixture of normals, which makes them particularly easy to implement. We propose general conditions on the prior on the local variance in scale mixtures of normals, such that posterior contraction at the minimax rate is assured. The conditions require tails at least as heavy as Laplace, but not too heavy, and a large amount of mass around zero relative to the tails, more so as the sparsity increases. These conditions give some general guidelines for choosing a shrinkage prior for estimation under a nearly black sparsity assumption. We verify these conditions for the class of priors considered by Ghosh and Chakrabarti (2015), which includes the horseshoe and the normal-exponential gamma priors, and for the horseshoe+, the inverse-Gaussian prior, the normal-gamma prior, and the spike-and-slab Lasso, and thus extend the number of shrinkage priors which are known to lead to posterior contraction at the minimax estimation rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.