Abstract

This paper describes a numerical approach developed to simulate the mechanism of matrix crack deflection at the fibre/matrix interface in brittle matrix composites. For this purpose, the fracture behaviour of a unit cell (microcomposite) consisting of a single fibre surrounded by a cylindrical tube of matrix was studied with the help of a finite element model. A fracture mechanics approach was used to design a criterion for deflection at the fibre/matrix interface of an annular crack present in the matrix. The analysis of the fracture behaviour of SiC/SiC and SiC/glass ceramics microcomposites shows that the introduction of a low modulus and low toughness interfacial layer at the fibre/matrix interface (e.g. a carbon coating) greatly favours matrix crack deflection at the interphase/fibre interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.