Abstract

We consider an open exponential network with two types of arrival flows at the network nodes: a message flow and a disaster flow. Messages arriving at the nodes form batches of customers of a random size. A disaster arrival at a node completely empties the queue at the node if it is nonempty and has no effect otherwise. Customers are served in batches of a random size. After a batch is served at a node, the batch quits the network and, according to a routing matrix, either sends a message or a disaster to another node or does not send anything. We find conditions for the stationary distribution of the network state probabilities to be represented as a product of shifted geometric distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.