Abstract

Solid precipitation represents a potentially important addition to other measures of deposition. However, an accurate estimate of snowfall amount and pollutant loading is not a trivial matter. There are obvious distinctions between regular precipitation collection and snowpack sampling that represent the cumulative chemistry of bulk deposition. The main goal is to show the most important processes and factors that may influence the rate and magnitude of pollutants deposition affected by the snowfall and snow cover: atmospheric pollutant enhancement of snowfall, pollutants deposition at snow cover surface, drifting and blowing snow, formation of the snow cover and its internal changes, as well as pollutants flow through the snowpack. These phenomena lead to continuous changes in the chemistry of the snow cover and the deposition calculated on the basis of pollutants concentrations in daily portions of atmospheric precipitation. The real deposition released from snowpack is strictly related to the number and depth of thaw episodes. If the amount of stored pollutants is large, first portions of ablation water flushing from the snowpack can carry the load of pollutants, and potentially affecting the environment in a detrimental way. Igneous bedrock is especially sensitive to acidic ions because of its low buffering capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.