Abstract

Optimization problems involving differences of functions arouse interest as generalizations of so-called d.c. problems, i.e. problems involving the difference of two convex functions. The class of d.c. functions is very rich, so d.c. problems are rather general optimization problems. Several global optimality conditions for these d.c. problems have been proposed in the optimization literature. We provide a survey of these conditions and try to detect their common basis. This enables us to give generalizations of the conditions to situations when the objective function is no longer a difference of convex functions, but the difference of two functions which are representable as the upper envelope of an arbitrary family of functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.