Abstract

Extreme learning machine (ELM) as a simple and rapid neural network has been shown its good performance in various areas. Different from the general single hidden layer feedforward neural network (SLFN), the input weights and biases in hidden layer of ELM are generated randomly, so that it only takes a little computational overhead to train the model. However, the strategy of selecting input weights and biases at random may result in ill-conditioned problems. Aiming to optimize the conditioning of ELM, we propose an effective particle swarm heuristic algorithm called Multitask Beetle Antennae Swarm Algorithm (MBAS), which is inspired by the structures of artificial bee colony (ABC) algorithm and Beetle Antennae Search (BAS) algorithm. Then, the proposed MBAS is applied for optimizing the input weights and biases of ELM to solve its ill-conditioned problems. Experiment results show that the proposed method is capable of simultaneously reducing the condition number and regression error, and achieving good generalization performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.