Abstract

Laser ablation is a novel non-mechanical wheel preparation method for optimizing thetreatment costs of superabrasive tools. In this study, the thermal effects of picosecond laser radiationon vitrified and resin bond CBN superabrasive grinding wheel surfaces was analytically andexperimentally investigated. The analytical approach is intended to find threshold process parametersfor selective ablation of cutting grains and bond material. A picosecond Yb:YAG laser device wasintegrated with a cylindrical grinding machine which facilitates the treatment of grinding wheel as itis mounted on the grinding spindle. It has been shown that, the extent of material ablation is definedby the maximum surface temperature induced by the laser radiation which is in turn defined by thelaser pulse energy. It is also suggested that, the depth of laser thermal effects is governed by therelative speed of the laser scanner with respect to the wheel surface

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call