Abstract
The conditioning of the linear finite volume element discretization for general diffusion equations is studied on arbitrary simplicial meshes. The condition number is defined as the ratio of the maximal singular value of the stiffness matrix to the minimal eigenvalue of its symmetric part. This definition is motivated by the fact that the convergence rate of the generalized minimal residual method for the corresponding linear systems is determined by the ratio. An upper bound for the ratio is established by developing an upper bound for the maximal singular value and a lower bound for the minimal eigenvalue of the symmetric part. It is shown that the bound depends on three factors, the number of the elements in the mesh, the mesh nonuniformity measured in the Euclidean metric, and the mesh nonuniformity measured in the metric specified by the inverse diffusion matrix. It is also shown that the diagonal scaling can effectively eliminates the effects from the mesh nonuniformity measured in the Euclidean metric. Numerical results for a selection of examples in one, two, and three dimensions are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.