Abstract

Aluminum (Al) is prevalent in soils, but Al toxicity is manifested only under acid conditions. It causes severe damages to the root system. Short-term waterlogging stress can occur simultaneously with Al toxicity in areas with high rainfall or an inappropriate irrigation pattern. Barley (Hordeum vulgare L.) is one of the most Al-sensitive small-grained cereals. In this work, we have investigated effects of short-term treatments with hypoxia and phenolic acid (two major constraints in waterlogged soils) on root sensitivity to low-pH and Al stresses. We showed that hypoxia-primed roots maintained higher cell viability when exposed to low-pH/Al stress, in both elongation and mature root zones, and possessed superior ability to retain K(+) in response to low-pH/Al stresses. These priming effects were not related to higher H(+)-ATPase activity and better membrane potential maintenance, and could not be explained by the increased expression levels of HvHAK1, which mediates high-affinity K(+) uptake in roots. Instead, hypoxia-conditioned roots were significantly less sensitive to H2O2 treatment, indicated by the 10-fold reduction in the magnitude of K(+) efflux changes. This suggested that roots pre-treated with hypoxia desensitized reactive oxygen species (ROS)-inducible K(+) efflux channels in root epidermis, most probably via enhanced antioxidative capacity. A possible role for Ca(2+) in stress-induced ROS signaling pathways is also discussed. Overall, our results report, for the first time, the phenomenon of cross-protection between hypoxia and low-pH/Al stresses, and causally link it to the cell's ability to maintain cytosolic K(+) homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.