Abstract

Assessment of uncertainty in the performance of fluvial reservoirs often requires the ability to generate realizations of channel sands that are conditional to well observations. For channels with low sinuosity this problem has been effectively solved. When the sinuosity is large, however, the standard stochastic models for fluvial reservoirs are not valid, because the deviation of the channel from a principal direction line is multivalued. In this paper, I show how the method of randomized maximum likelihood can be used to generate conditional realizations of channels with large sinuosity. In one example, a Gaussian random field model is used to generate an unconditional realization of a channel with large sinuosity, and this realization is then conditioned to well observations. Channels generated in the second approach are less realistic, but may be sufficient for modeling reservoir connectivity in a realistic way. In the second example, an unconditional realization of a channel is generated by a complex geologic model with random forcing. It is then adjusted in a meaningful way to honor well observations. The key feature in the solution is the use of channel direction instead of channel deviation as the characteristic random function describing the geometry of the channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.