Abstract

Smartphones typically compute position using duty-cycled Global Navigation Satellite System (GNSS) L1 code measurements and Single Point Positioning (SPP) processing with the aid of cellular and other measurements. This internal positioning solution has an accuracy of several tens to hundreds of meters in realistic environments (handheld, vehicle dashboard, suburban, urban forested, etc.). With the advent of multi-constellation, dual-frequency GNSS chips in smartphones, along with the ability to extract raw code and carrier-phase measurements, it is possible to use Precise Point Positioning (PPP) to improve positioning without any additional equipment. This research analyses GNSS measurement quality parameters from a Xiaomi MI 8 dual-frequency smartphone in varied, realistic environments. In such environments, the system suffers from frequent phase loss-of-lock leading to data gaps. The smartphone measurements have low and irregular carrier-to-noise (C/N0) density ratio and high multipath, which leads to poor or no positioning solution. These problems are addressed by implementing a prediction technique for data gaps and a C/N0-based stochastic model for assigning realistic a priori weights to the observables in the PPP processing engine. Using these conditioning techniques, there is a 64% decrease in the horizontal positioning Root Mean Square (RMS) error and 100% positioning solution availability in sub-urban environments tested. The horizontal and 3D RMS were 20 cm and 30 cm respectively in a static open-sky environment and the horizontal RMS for the realistic kinematic scenario was 7 m with the phone on the dashboard of the car, using the SwiftNav Piksi Real-Time Kinematic (RTK) solution as reference. The PPP solution, computed using the YorkU PPP engine, also had a 5–10% percentage point more availability than the RTK solution, computed using RTKLIB software, since missing measurements in the logged file cause epoch rejection and a non-continuous solution, a problem which is solved by prediction for the PPP solution. The internal unaided positioning solution of the phone obtained from the logged NMEA (The National Marine Electronics Association) file was computed using point positioning with the aid of measurements from internal sensors. The PPP solution was 80% more accurate than the internal solution which had periodic drifts due to non-continuous computation of solution.

Highlights

  • Global Navigation Satellite System (GNSS) based positioning in smartphones has been used for personal and Shinghal and Bisnath Satell Navig (2021) 2:10 position-velocity–time and limited satellite information, such as the elevation and azimuth (Guo et al 2020)

  • In 2018, the world’s first dual-frequency GNSS-enabled smartphone, the Xiaomi MI 8, equipped with a Broadcom BCM47755 chipset was launched. It is capable of tracking L1/E1 and L5/E5 code and carrier-phase signals from Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo) and Quasi-Zenith Satellite System (QZSS) and single-frequency measurements from GLObal NAvigation Satellite System (GLONASS) L1 code and BeiDou Navigation Satellite System (BDS) B1 code (EGSA 2018)

  • Conclusions and future work This research attempts to address gaps in GNSS research related to smartphones by focusing on analyzing and addressing challenges posed by the non-continuous and poor quality of raw measurements collected in realistic environments

Read more

Summary

Introduction

Global Navigation Satellite System (GNSS) based positioning in smartphones has been used for personal and. Wu et al (2019) processed GNSS measurements from a Xiaomi MI 8 smartphone in the dual-frequency PPP mode and obtained RMS positioning errors in the E, N, and up (U) directions of 21.8, 4.1, and 11.0 cm, respectively. Accurate positioning is difficult, as smartphones possess low-cost, inverted-F linearly polarized antennas that lead to poor multipath suppression, multiple and frequent data gaps, and low, irregular signal strength Raw GNSS measurement collection and analysis A Xiaomi MI 8 phone with a BCM47755 GNSS chip was used for data collection It tracks code and carrier-phase measurements from GPS (L1/L5), Galileo (E1/E5) and QZSS (L1/L5) and single-frequency signals from GLONASS (L1) and BDS.

Kinematic
Findings
Conclusions and future work
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.