Abstract

In petroleum exploration and production, it is essential to have good estimations of the uncertainties on the reserves. Uncertainties on the velocity model used during the data processing are of major importance in this estimation. The generation of several velocity fields gives access to a quantified estimation of the uncertainties due to the velocity model inversion. The use of statistical methods helps in generating several important, equiprobable velocity fields, matching all the available velocity information. This paper presents an efficient simulation algorithm to generate instantaneous velocity fields, constrained by the distribution of values measured at the wells, and calibrated by the stacking velocities, taken as root-mean-square velocities. The simulations also match the covariance model given for the instantaneous velocity fields. The method is developed in a simple one-layer case with constant velocity, and then extended to more realistic situations. Finally, a real data application is shown, using data provided by ENI–Agip Division, and the efficiency of the proposed simulation method is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.