Abstract

This paper aims to propose a Novel Condition-based maintenance (CBM) decision aid model for optimising the maintenance of complex multi-component systems. As the degradation level of each component is assumed to be independent and stochastic, it follows a specific probability distribution determined from historical data of experimental observations and inspection. The main objective is to optimise the total cost for providing maintenance actions and reducing the excess of spare parts usage. The decision support model consists of determining measurements on components with the aim of estimating the instant of time of removing predictively one or a group of components before they fail. The measurement model includes the mean residual lifetime (MRL) and some extensions developed for this purpose. For demonstrating the pertinency of the proposed model, we use a preventive maintenance strategy for one-component systems and a grouping/opportunistic maintenance for multi-component systems. Besides, a numerical comparative study performing these measurements is carried out using several examples and a case study from Electric energy distribution systems. The solution is illustrated as a decision-making optimal model for optimising the maintenance operations’ costs and the total number of spare parts. The numerical results and the comparison show the efficiency of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.