Abstract
The purpose of this analysis was to investigate the enzyme activity and specificity of using adenovirus-mediated Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) mutants in combination with gemcitabine. Compared with herpes simplex type 1 thymidine kinase (HSV-TK) and other known dNKs, this Dm-dNK enzyme has a broader substrate specificity and a higher catalytic rate. We created the Dm-dNK mutants (dNKmu) by site-directed mutagenesis at the sites of 244E, 245S, 251S and 252R, with the last 10amino acids in the amino acid sequence randomly mutated. We evaluated the enzyme activity and substrate specificity. The engineered enzymes showed a relative increase in phosphorylation in the nucleoside analogs of BVDU ((E)-5‑(2-Bromovinyl)-2'-deoxyuridine) or gemcitabine (DFDC, 2',2'-difluoro-deoxycytidine) compared with the wild-type enzyme. The dNKmu enzymes were expressed in the breast cancer cell lines MDA-MB-231 (ER-) and MCF7 (ER+). In studying the sensitivity of the cell lines to DFDC, conditionally replicative adenovirus (CRAd) SG500-dNKmu showed higher expression and enzymatic activity than the replication-defective adenovirus SG500 in cancer cells, but with less cytotoxicity to cancer cells than that of SG500. Our data suggest that the triple phosphorylated DFDC catalyzed by dNKmu inhibited the replication of adenovirus with a simultaneous positive therapeutic effect to cancer cells. Therefore, concomitant use of the SG500‑dNKmu and DFDC could be a novel targeted strategy in suicide gene therapy with safe control of excessive virus replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.