Abstract
We introduce a variant of transition systems, where activation of transitions depends on conditions of the environment and upgrades during runtime potentially create additional transitions. Using a cornerstone result in lattice theory, we show that such transition systems can be modelled in two ways: as conditional transition systems (CTS) with a partial order on conditions, or as lattice transition systems (LaTS), where transitions are labelled with the elements from a distributive lattice. We define equivalent notions of bisimilarity for both variants and characterise them via a bisimulation game. We explain how conditional transition systems are related to featured transition systems for the modelling of software product lines. Furthermore, we show how to compute bisimilarity symbolically via BDDs by defining an operation on BDDs that approximates an element of a Boolean algebra into a lattice. We have implemented our procedure and provide runtime results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.