Abstract

Summary We argue that it can be fruitful to take a predictive view on notions such as the precision of a point estimator and the confidence of an interval estimator in frequentist inference. This predictive approach has implications for conditional inference, because it immediately allows a quantification of the concept of relevance for conditional inference. Conditioning on an ancillary statistic makes inference more relevant in this sense, provided that the ancillary is a precision index. Not all ancillary statistics satisfy this demand. We discuss the problem of choice between alternative ancillary statistics. The approach also has implications for the best choice of variance estimator, taking account of correlations with the squared error of estimation itself. The theory is illustrated by numerous examples, many of which are classical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.