Abstract

This study is an extension of the stochastic analysis of transient two-phase flow in randomly heterogeneous porous media (Chen et al. in Water Resour Res 42:W03425, 2006), by incorporating direct measurements of the random soil properties. The log-transformed intrinsic permeability, soil pore size distribution parameter, and van Genuchten fitting parameter are treated as stochastic variables that are normally distributed with a separable exponential covariance model. These three random variables conditioned on given measurements are decomposed via Karhunen–Loeve decomposition. Combined with the conditional eigenvalues and eigenfunctions of random variables, we conduct a series of numerical simulations using stochastic transient water–oil flow model (Chen et al. in Water Resour Res 42:W03425, 2006) based on the KLME approach to investigate how the number and location of measurement points, different random soil properties, as well as the correlation length of the random soil properties, affect the stochastic behavior of water and oil flow in heterogeneous porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.