Abstract

Habitat-modifying organisms that impact other organisms and local functioning are important in determining ecosystem resilience. However, it is often unclear how the outcome of interactions performed by key species varies depending on the spatial and temporal disturbance context which makes the prediction of disturbance-driven regime shifts difficult. We investigated the strength and generality of effects of the filter feeding cockle Cerastoderma edule on its ambient intertidal benthic physical and biological environment. By comparing the magnitude of the effect of experimental cockle removal between a non-cohesive and a sheltered cohesive sediment in two different periods of the year, we show that the outcome of cockle interference effects relates to differences in physical disturbance, and to temporal changes in suspended sediment load and ontogenetic changes in organism traits. Interference effects were only present in the cohesive sediments, though the effects varied seasonally. Cockle presence decreased only the density of surface-dwelling species suggesting that interference effects were particularly mediated by bioturbation of the surface sediments. Furthermore, density reductions in the presence of cockles were most pronounced during the season when larvae and juveniles were present, suggesting that these life history stages are most vulnerable to interference competition. We further illustrate that cockles may enhance benthic microalgal biomass, most likely through the reduction of surface-dwelling grazing species, especially in periods with high sediment load and supposedly also high bioturbation rates. Our results emphasize that the physical disturbance of the sediment may obliterate biotic interactions, and that temporal changes in environmental stressors, such as suspended sediments, may affect the outcome of key species interference effects at the local scale. Consequently, natural processes and anthropogenic activities that change bed shear stress and sediment dynamics in coastal soft-sediment systems will affect cockle-mediated influences on ecosystem properties and therefore the resilience of these systems to environmental change.

Highlights

  • Coastal soft-sediment habitats such as estuarine tidal flats represent some of our most valued ecosystems and are characterized by a high biomass of invertebrate benthic organisms that sustain coastal foodwebs [1,2]

  • LDSDF species richness and total density were higher in the non-cohesive sediments, while LDSDF evenness was higher during both trials, and LDSDF diversity was higher during in May–June, in the non-cohesive sediments (Figure 3, e–f)

  • By manipulating cockle densities in two contrasting sediment types in two different periods we were able to relate the significance of cockle effects to physical disturbance, and to temporal changes in the presence of species life stages and likely changes in cockle behavior

Read more

Summary

Introduction

Coastal soft-sediment habitats such as estuarine tidal flats represent some of our most valued ecosystems and are characterized by a high biomass of invertebrate benthic organisms that sustain coastal foodwebs [1,2]. These productive systems increasingly experience disturbances with the expanding human population and exploitation of coastal areas [3,4]. Suspended sediments may deposit or remain suspended depending on the physical forces associated with waves and currents, which may vary spatially and temporally and affect the balance between deposition and (re)suspension Both processes influence sediment community composition and functioning. This is likely to have farreaching consequences since the resilience of ecosystems represents an insurance against potentially adverse changes in the delivery of ecosystem goods and services

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.