Abstract
To spatially control biochemical functions at specific sites within a genome, we have engineered a synthetic switch that activates when bound to its DNA target site. The system uses two CRISPR-Cas complexes to colocalize components of a de novo-designed protein switch (Co-LOCKR) to adjacent sites in the genome. Colocalization triggers a conformational change in the switch from an inactive closed state to an active open state with an exposed functional peptide. We prototype the system in yeast and demonstrate that DNA binding triggers activation of the switch, recruitment of a transcription factor, and expression of a downstream reporter gene. This DNA-triggered Co-LOCKR switch provides a platform to engineer sophisticated functions that should only be executed at a specific target site within the genome, with potential applications in a wide range of synthetic systems including epigenetic regulation, imaging, and genetic logic circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.