Abstract
In order to adjust individual-level covariate effects for confounding due to unmeasured neighborhood characteristics, we have recently developed conditional pseudolikelihood methods to estimate the parameters of a proportional odds model for clustered ordinal outcomes with complex survey data. The methods require sampling design joint probabilities for each within-neighborhood pair. In the present article, we develop a similar methodology for a baseline category logit model for clustered multinomial outcomes and for a loglinear model for clustered count outcomes. All of the estimators and asymptotic sampling distributions we present can be conveniently computed using standard logistic regression software for complex survey data, such as sas proc surveylogistic. We demonstrate validity of the methods theoretically and also empirically by using simulations. We apply the new method for clustered multinomial outcomes to data from the 2008 Florida Behavioral Risk Factor Surveillance System survey in order to investigate disparities in frequency of dental cleaning both unadjusted and adjusted for confounding by neighborhood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.