Abstract
Random coefficient (RC) models are commonly used in clinical trials to estimate the rate of change over time in longitudinal data. Trials utilizing a surrogate endpoint for accelerated approval with a confirmatory longitudinal endpoint to show clinical benefit is a strategy implemented across various therapeutic areas, including immunoglobulin A nephropathy. Understanding conditional power (CP) and information fraction calculations of RC models may help in the design of clinical trials as well as provide support for the confirmatory endpoint at the time of accelerated approval. This paper provides calculation methods, with practical examples, for determining CP at an interim analysis for a RC model with longitudinal data, such as estimated glomerular filtration rate (eGFR) assessments to measure rate of change in eGFR slope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.