Abstract
A conditional Poisson process (often called a double stochastic Poisson process) is characterized as a random time transformation of a Poisson process with unit intensity. This characterization is used to exhibit the jump times and sizes of these processes, and to study their limiting behavior. A conditional Poisson process, whose intensity is a function of a Markov process, is discussed. Results similar to those presented can be obtained for any process with conditional stationary independent increments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Probability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.