Abstract

Transforming growth factor-β (TGF-β) signaling is known to affect salivary gland physiology by influencing branching morphogenesis, regulating ECM deposition, and controlling immune homeostasis. To study the role of TGF-β1 in the salivary gland, we created a transgenic mouse (β1glo) that conditionally overexpresses active TGF-β1 upon genomic recombination by Cre recombinase. β1glo mice were bred with an MMTV (mouse mammary tumor virus)-Cre (MC) transgenic line that expresses the Cre recombinase predominantly in the secretory cells of both the mammary and salivary glands. Although most of the double positive (β1glo/MC) pups die either in utero or just after birth, clear defects in salivary gland morphogenesis such as reduced branching and increased mesenchyme could be seen. Those β1glo/MC mice that survived into adulthood, however, had hyposalivation due to salivary gland fibrosis and acinar atrophy. Increased TGF-β signaling was observed in the salivary gland with elevated phosphorylation of Smad2 and concomitant increase in ECM deposition. In particular, aberrant TGF-β1 overexpression caused salivary gland hypofunction in this mouse model because of the replacement of normal glandular parenchyma with interstitial fibrous tissue. These results further implicate TGF-β in pathological cases of salivary gland inflammation and fibrosis that occur with chronic infections in the glands or with the autoimmune disease, Sjögren’s syndrome, or with radiation therapy given to head-and-neck cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.