Abstract

Estimating quantile sensitivities is important in many optimization applications, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming. Recently, Hong (Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57 118–130) derived a batched infinitesimal perturbation analysis estimator for quantile sensitivities, and Liu and Hong (Liu, G., L. J. Hong. 2009. Kernel estimation of quantile sensitivities. Naval Res. Logist. 56 511–525) derived a kernel estimator. Both of these estimators are consistent with convergence rates bounded by n−1/3 and n−2/5, respectively. In this paper, we use conditional Monte Carlo to derive a consistent quantile sensitivity estimator that improves upon these convergence rates and requires no batching or binning. We illustrate the new estimator using a simple but realistic portfolio credit risk example, for which the previous work is inapplicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.