Abstract

AbstractOn the basis of the conditional distribution, given the marginal totals of non‐cases fixed for each of independent 2 × 2 tables under inverse sampling, this paper develops the conditional maximum likelihood (CMLE) estimator of the underlying common relative difference (RD) and its asymptotic conditional variance. This paper further provides for the RD an exact interval calculation procedure, of which the coverage probability is always larger than or equal to the desired confidence level and for investigating whether the underlying common RD equals any specified value an exact test procedure, of which Type I error is always less than or equal to the nominal α‐level. These exact interval estimation and exact hypothesis testing procedures are especially useful for the situation in which the number of index subjects in a study is small and the asymptotically approximate methods may not be appropriate for use. This paper also notes the condition under which the CMLE of RD uniquely exists and includes a simple example to illustrate use of these techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.