Abstract

The functionally generalized variable separation solutions of a general KdV-type equations ut = uxxx + A(u,ux)uxx + B(u,ux) are investigated by developing the conditional Lie-Bäcklund symmetry method. A complete classification of the considered equations, which admit multi-dimensional invariant subspaces governed by higher-order conditional Lie-Bäcklund symmetries, is presented. As a result, several concrete examples are provided to construct functionally generalized variable separation solutions of some resulting equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.