Abstract

Problems can arise in studying the regulation of transcription in fungi if gene disruption is employed to evaluate the role of essential transcription factors. Herein, we have developed a method to characterize the essential genes of Penicillium marneffei. This has been used to examine the significance of P. marneffei TATA-binding protein (TBP) in growth and development. Strains in which the expression of TbpA could be regulated were constructed by placing tbpA under the control of the xylP promoter. The construct was introduced into P. marneffei and the resulting strains were used to produce P. marneffei tbpA deletion strains. Phenotypic examination of growth of the tbpA overexpressing strains revealed that high levels of TbpA expression inhibit fungal growth at conidial germination in both filamentous and yeast forms. Under repressing conditions, the tbpA deletion strains failed to grow at 25 °C whilst showing reduced growth at 37 °C. The results suggested that TbpA is essential for P. marneffei filamentous growth, but plays a less significant role in growth and development during the yeast phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.