Abstract
The conditional large deviations theorem of Jing and Robinson (1994) is extended in the following sense. Consider a random sample of pairs of random vectors and the sample means of each of the pairs. For p ⩾ 1, the probability that first falls outside a certain p-dimensional convex set given that the second is fixed is shown to decrease with the sample size at an exponential rate which depends on the Kullback-Leibler distance between two distributions in an associated exponential familiy of distributions. Examples are given which include a method of computing the Bahadur exact slope for tests of certain composite hypotheses in exponential families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.