Abstract
AbstractKatok [Lyapunov exponents, entropy and periodic points of diffeomorphisms. Publ. Math. Inst. Hautes Études Sci.51 (1980), 137–173] conjectured that every $C^{2}$ diffeomorphism f on a Riemannian manifold has the intermediate entropy property, that is, for any constant $c \in [0, h_{\mathrm {top}}(f))$ , there exists an ergodic measure $\mu $ of f satisfying $h_{\mu }(f)=c$ . In this paper, we obtain a conditional intermediate metric entropy property and two conditional intermediate Birkhoff average properties for basic sets of flows that characterize the refined roles of ergodic measures in the invariant ones. In this process, we establish a ‘multi-horseshoe’ entropy-dense property and use it to get the goal combined with conditional variational principles. We also obtain the same result for singular hyperbolic attractors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.