Abstract
Conditioned limit laws constitute an important and well developed framework of extreme value theory that describe a broad range of extremal dependence forms including asymptotic independence. We explore the assumption of conditional independence of X1 and X2 given X0 and study its implication in the limiting distribution of (X1,X2) conditionally on X0 being large. We show that under random norming, conditional independence is always preserved in the conditioned limit law but might fail to do so when the normalisation does not include the precise value of the random variable in the conditioning event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.