Abstract

We consider the problem of optimizing the ratio of two convex functions over a closed and convex set in the space of matrices. This problem appears in several applications and can be classified as a double-convex fractional programming problem. In general, the objective function is nonconvex but, nevertheless, the problem has some special features. Taking advantage of these features, a conditional gradient method is proposed and analyzed, which is suitable for matrix problems. The proposed scheme is applied to two different specific problems, including the well-known trace ratio optimization problem which arises in many engineering and data processing applications. Preliminary numerical experiments are presented to illustrate the properties of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.