Abstract

We have expressed the tumor suppressor p16 under the control of a tetracycline-sensitive promoter in two human glioblastoma cell lines which do not contain endogenous p16. Ectopic p16 expression led to a stable but reversible G1 phase cell cycle arrest, reduced the growth of both cell lines in cell culture, and almost abolished their in vitro tumorigenicity. U-87MG-tTA-p16 glioblastoma cells consistently formed tumors after subcutaneous injection into the flanks of nude mice. p16 expression in these tumors was strictly dependent on the presence or absence of tetracycline in the drinking water. Ectopic p16 reduced the tumor take rate (in vivo tumorigenicity) of U-87MG-tTA-p16 cells from 18/20 (90%) to 5 tumors/12 (42%) tumor cell injections. p16 positive and negative tumors differed with respect to their Ki67 labeling indices (34 +/- 4% vs. 52 +/- 6% , P < 0.001, student's t-test). These data are consistent with an in vitro and in vivo glioma suppressor role for p16. Interestingly, we observed a secondary reduction of pRB expression in tumors (and cell cultures) exposed to p16 for > or = 10 (6) days. pRB is p16's major downstream target. Hence, this finding might explain, why p16 expression neither significantly affected the morphology nor led to a reduction of size or growth rate of the tumors. Loss of pRB following p16 expression might severely limit the potential benefit of p16 gene therapy for glioblastoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.