Abstract
Two conditional expectations in unbounded operator algebras (O∗-algebras) are discussed. One is a vector conditional expectation defined by a linear map of anO∗-algebra into the Hilbert space on which theO∗-algebra acts. This has the usual properties of conditional expectations. This was defined by Gudder and Hudson. Another is an unbounded conditional expectation which is a positive linear mapℰof anO∗-algebraℳonto a givenO∗-subalgebra𝒩ofℳ. Here the domainD(ℰ)ofℰdoes not equal toℳin general, and so such a conditional expectation is called unbounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.