Abstract
Abstract Conditional excess risk measures like Marginal Expected Shortfall and Marginal Mean Excess are designed to aid in quantifying systemic risk or risk contagion in a multivariate setting. In the context of insurance, social networks, and telecommunication, risk factors often tend to be heavy-tailed and thus frequently studied under the paradigm of regular variation. We show that regular variation on different subspaces of the Euclidean space leads to these risk measures exhibiting distinct asymptotic behavior. Furthermore, we elicit connections between regular variation on these subspaces and the behavior of tail copula parameters extending previous work and providing a broad framework for studying such risk measures under multivariate regular variation. We use a variety of examples to exhibit where such computations are practically applicable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.