Abstract

Hippocampal cell loss was induced by the four-vessel occlusion (4VO) method, a model of global ischaemia. Global ischaemia for 15 min induced a selective damage to the CA1 subfield. Occlusion for 25 min produced a larger cell loss within the CA1 and more variably the CA2, CA3, the striatum and cortex. Ischaemic and sham control groups were assessed on two conditional discrimination tasks (presenting the conditional cues either in the choice arms or the start arm) and two spatial tasks (water maze and a simple spatial discrimination task). No significant effects were found on either of the spatial tasks (apart from the speed measure on the water maze). However, on the conditional discrimination task with the cues in the choice arms, animals with 25 min ischaemia learned the task significantly more slowly than the 15 min ischaemic and control groups. Results for the task with cues presented in the start arm differed according to choice of criterion for learning. With a standard criterion of 90% accuracy on one session controls were significantly superior to both ischaemic groups. However, in this task rats with 15 min occlusion showed the greatest impairment, and were significantly worse than both the controls and the 25 min occlusion group. These results suggest that hippocampal ischaemic damage disrupts the learning of conditional discrimination but not simple spatial tasks. No clear relationship between the extent of hippocampal cell loss and behavioural impairment was evident. These results highlight the critical importance of procedural factors in the assessment of cognitive impairment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call