Abstract

Continuous-time nonlinear stochastic differential state and measurement equations, all of which have coefficients capable of abrupt changes at a random time, are considered; finite-state jump Markov chains are used to model the changes. Conditional probability densities which are essential in obtaining filtered estimates for these hybrid systems are then derived. They are governed by a coupled system of stochastic partial differential equations. When the Q-matrix of the Markov chain is either lower or upper diagonal, it is shown that the system of conditional density equations is finite-dimensional computable. These findings are then applied to a fault detection problem to compute state estimates that include the failure time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.