Abstract

Stat5 and Stat3, two members of the Stat (signal transducer and activator of transcription) family, are known to play critical roles in mammopoiesis/lactogenesis and involution, respectively, in the mammary gland. Phosphotyrosine phosphatase Shp2 has been shown to dephosphorylate and thus inactivate both Stat5 and Stat3 in vitro. Paradoxically, cell culture studies also suggest a positive role of Shp2 in promoting prolactin-stimulated Stat5 activation. We have shown here that selective deletion of Shp2 in mouse mammary glands suppresses Stat5 activity during pregnancy and lactation, resulting in significant impairment of lobulo-alveolar outgrowth and lactation. In contrast, Stat3 activity was slightly up-regulated shortly before/at involution, leading to normal epithelial cell apoptosis/involution in Shp2-deficient mammary gland. Thus, Shp2 acts to promote Stat5 activation by the JAK2.prolactin receptor complex, while negatively modulating Stat3 activity before the onset of involution. This is the first demonstration that Shp2 manipulates Stat5 and Stat3 activities reciprocally in mammary epithelial cells, providing novel insight into the complex mechanisms for regulation of various Stat family members by a cytoplasmic tyrosine phosphatase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.