Abstract

BackgroundBrain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG (electroencephalogram) was used to assess conditional associative learning in one severely paralyzed, late-stage ALS patient. After having been taught arbitrary stimulus relations, he was evaluated for formation of equivalence classes among the trained stimuli.MethodsA monitor presented visual information in two targets. The method of teaching was matching to sample. Three types of stimuli were presented: signs (A), colored disks (B), and geometrical shapes (C). The sample was one type, and the choice was between two stimuli from another type. The patient used his SCP to steer a cursor to one of the targets. A smiley was presented as a reward when he hit the correct target. The patient was taught A-B and B-C (sample – comparison) matching with three stimuli of each type. Tests for stimulus equivalence involved the untaught B-A, C-B, A-C, and C-A relations. An additional test was discrimination between all three stimuli of one equivalence class presented together versus three unrelated stimuli. The patient also had sessions with identity matching using the same stimuli.ResultsThe patient showed high accuracy, close to 100%, on identity matching and could therefore discriminate the stimuli and control the cursor correctly. Acquisition of A-B matching took 11 sessions (of 70 trials each) and had to be broken into simpler units before he could learn it. Acquisition of B-C matching took two sessions. The patient passed all equivalence class tests at 90% or higher.ConclusionThe patient may have had a deficit in acquisition of the first conditional association of signs and colored disks. In contrast, the patient showed clear evidence that A-B and B-C training had resulted in formation of equivalence classes. The brain-computer interface technology combined with the matching to sample method is a useful way to assess various cognitive abilities of severely paralyzed patients, who are without reliable motor control.

Highlights

  • Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG was used to assess conditional associative learning in one severely paralyzed, late-stage amyotrophic lateral sclerosis (ALS) patient

  • We report on a method for assessment of equivalence class formation in one severely paralyzed patient with amyotrophic lateral sclerosis (ALS)

  • During the first five training days where the patient had identity matching sessions using the same stimuli as in the conditional relation procedures, the patient maintained a high level of accuracy ranging from 88.6% to 100%, with an average of 96.3% (N = 19 sessions); six sessions were at 100%

Read more

Summary

Introduction

Brain-computer interface methodology based on self-regulation of slow-cortical potentials (SCPs) of the EEG (electroencephalogram) was used to assess conditional associative learning in one severely paralyzed, late-stage ALS patient. We readily learn that a picture of an object can represent the object and that a printed word can represent both. Such relational learning among stimuli is formally studied as conditional associations or conditional relations, and the formation of equivalence classes among the stimuli is a highly relevant topic in both research and education (e.g., [1,2]). We report on a method for assessment of equivalence class formation in one severely paralyzed patient with amyotrophic lateral sclerosis (ALS)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.