Abstract
Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF). To address the function of TNF from this cellular source in focal cerebral ischemia we used TNF conditional knock out mice (LysMcreTNFfl/fl) in which the TNF gene was deleted in cells of the myeloid lineage, including microglia. The deletion reduced secreted TNF levels in lipopolysaccharide-stimulated cultured primary microglia by ~93%. Furthermore, phosphorylated-ERK/ERK ratios were significantly decreased in naïve LysMcreTNFfl/fl mice demonstrating altered ERK signal transduction. Micro-PET using 18[F]-fluorodeoxyglucose immediately after focal cerebral ischemia showed increased glucose uptake in LysMcreTNFfl/fl mice, representing significant metabolic changes, that translated into increased infarct volumes at 24 hours and 5 days compared to littermates (TNFfl/fl). In naïve LysMcreTNFfl/fl mice cytokine levels were low and comparable to littermates. At 6 hours, TNF producing microglia were reduced by 56% in the ischemic cortex in LysMcreTNFfl/fl mice compared to littermate mice, whereas no TNF+ leukocytes were detected. At 24 hours, pro-inflammatory cytokine (TNF, IL-1β, IL-6, IL-5 and CXCL1) levels were significantly lower in LysMcreTNFfl/fl mice, despite comparable infiltrating leukocyte populations. Our results identify microglial TNF as beneficial and neuroprotective in the acute phase and as a modulator of neuroinflammation at later time points after experimental ischemia, which may contribute to regenerative recovery.
Highlights
Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF)
When testing for spontanoeus alternation behavior (SAB) and working memory, we found no difference in SAB % but significantly fewer Y-maze entries in LysMcreTNFfl/fl mice compared to controls
Using LysMcreTNFfl/fl conditional KO mice with specific ablation of TNF in myeloid cells, including microglia, we demonstrate that microglial-derived TNF contributes to TNF-mediated protective effects in experimental stroke
Summary
Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF). Given the contribution of microglia/macrophages to the pathophysiology of stroke, in the present study, we investigated the effect of TNF ablation in myeloid cells on neuroprotection and functional outcome after focal cerebral ischemia. The relevance of the present study was underlined by investigating glial activation, TNF and TNF receptor expression in human autopsy material from stroke patients. This may have significant implications for the development of future neuroprotective treatment strategies in the acute phase after stroke, as modulating the microglial TNF response acutely can provide a viable option to boost neuroprotection
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.