Abstract
One of the greatest challenges facing municipal engineers is the condition rating of buried infrastructure assets, particularly water mains. This is because water mains are typically underground, operated under pressure, and usually inaccessible. Condition rating is a mandatory process to establish and employ management strategies for any asset. To assess the condition of water mains, current research considers physical, environmental, and operational factors and their effect on different types of mains (i.e., cast iron, ductile iron, and asbestos). A condition rating model is developed to assess and set up rehabilitation priority for water mains using the artificial neural network (ANN) approach. Data are collected from different municipalities to train the developed model. The ANN input factors incorporate pipe type, size, age, breakage rate, Hazen-Williams factor, excavation depth, soil type, and top road surface; however, the output is pipe condition. The trained ANN shows robust performance (learning...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.