Abstract

A piecewise smooth domain is said to have generic corners if the corners are generic CR manifolds. It is shown that a biholomorphic mapping from a piecewise smooth pseudoconvex domain with generic corners in complex Euclidean space that satisfies Condition R to another domain extends as a smooth diffeomorphism of the respective closures if and only if the target domain is also piecewise smooth with generic corners and satisfies Condition R. Further it is shown that a proper map from a domain with generic corners satisfying Condition R to a product domain of the same dimension extends continuously to the closure of the source domain in such a way that the extension is smooth on the smooth part of the boundary. In particular, the existence of such a proper mapping forces the smooth part of the boundary of the source to be Levi degenerate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.