Abstract

To improve the efficiency and reliability of wind power generation, condition monitoring of wind turbines has drawn extensive attention worldwide. However, blade health monitoring is still challenging because of volatile operating conditions and the dependence on the assumption that healthy and unhealthy measurements can be naturally separated after the training stage. In this paper, a self-supervised health representation learning method is proposed to address these problems, and only healthy measurements are required in training. Specifically, data representations related to blade health conditions are learned by neural networks though data augmentation and an auxiliary task. In this case, the interference of operating circumstances and noise can be eliminated, and the volatility of measurements can be suppressed to establish accurate models of healthy operations. Moreover, the separability assumption is guaranteed by imposing constraints on the representation distributions of unhealthy samples, improving the reliability of decision making based on the learned knowledge. Blade health conditions are recognized using kernel density estimation. The satisfactory performance of the proposed method is demonstrated through laboratory and field measurements, achieving higher accuracy than existing approaches for online health monitoring. This work contributes to the economy of clean energy utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.