Abstract

An increasing popularity of researches focuses on the vibration signal with the characteristics of nonstationary, nonlinear, and strong noise interference. A nonlinear dimension and feature reduction method called multiple empirical mode entropy decomposition-nonlocal orthogonal preserving embedding (MEMED-NLOPE) is proposed to implement condition monitoring in this paper. Different from multiple empirical mode decomposition (MEMD), MEMED adopts maximum entropy method, which can directly output the subsignal with the maximum correlation and realize nonlinear dimensionality reduction. Besides, multiscale feature extraction method is used during preprocessing nonlinear data process, which realizes feature reduction. Finally, nonlocal orthogonal preserving embedding algorithm-exponentially weighted moving average (NLOPE-EWMA) realizes the automatic detection of the fault. Taking the laboratory rolling bearing test and naval gun pendulum mechanism test as cases, the effectiveness of MEMED-NLOPE is verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.