Abstract
In this paper, a diagnostic procedure for rotor bar faults in induction motors is presented, based on the Hilbert and discrete wavelet transforms. The method is compared with other procedures with the same data, which are based on time-frequency analysis, frequency analysis and time domain. The results show that this method improves the rotor fault detection in transient conditions. Variable speed drive applications are common in industry. However, traditional condition monitoring methods fail in time-varying conditions or with load oscillations. This method is based on the combined use of the Hilbert and discrete wavelet transforms, which compute the energy in a bandwidth corresponding to the maximum fault signature. Theoretical analysis, numerical simulation and experiments are presented, which confirm the enhanced performance of the proposed method with respect to prior solutions, especially in time-varying conditions. The comparison is based on quantitative analysis that helps in choosing the optimal trade-off between performance and (computational) cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.